
1

Adaptive Perturbation-Based Gradient Estimation
for Discrete Latent Variable Models

Pasquale Minervini

p.minervini@ed.ac.uk

www.neuralnoise.com

@pminervini

Mathias

Niepert

Luca

Franceschi

mailto:p.minervini@ed.ac.uk
http://www.neuralnoise.com

• Combination of discrete optimisation algorithms (e.g., an ILP solver, Dijkstra’s
shortest path algorithm) and arbitrary neural modules

• Combination of complex discrete probability distributions (e.g., discrete attention
distributions over the input, graph-structured representations) with arbitrary neural
modules

Discrete Representations in Deep Neural Models

Left

Right

2

• Combination of discrete optimisation algorithms (e.g., an ILP solver, Dijkstra’s
shortest path algorithm) and arbitrary neural modules

• Combination of complex discrete probability distributions (e.g., discrete attention
distributions over the input, graph-structured representations) with arbitrary neural
modules

Left

Right

3

Discrete Representations in Deep Neural Models

• Combination of discrete optimisation algorithms (e.g., an ILP solver, Dijkstra’s
shortest path algorithm) and arbitrary neural modules

• Combination of complex discrete probability distributions (e.g., discrete attention
distributions over the input, graph-structured representations) with arbitrary neural
modules

Left

Right

4

Discrete Representations in Deep Neural Models

Learning to Plan
1. A neural model assigns weights to cells in a map

2. Weights are used as input to a shortest path algorithm

3. The solver returns a shortest path which is then used by the downstream neural
model for e.g., deciding the next action, or computing a loss function

5

Learning to Plan
1. A neural model assigns weights to cells in a map

2. Weights are used as input to a shortest path algorithm

3. The solver returns a shortest path which is then used by the downstream neural
model for e.g., deciding the next action, or computing a loss function

6

Learning to Plan
1. A neural model assigns weights to cells in a map

2. Weights are used as input to a shortest path algorithm

3. The solver returns a shortest path which is then used by the downstream neural
model for e.g., deciding the next action, or computing a loss function

7

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Learning to Plan
1. A neural model assigns weights to cells in a map

2. Weights are used as input to a shortest path algorithm

3. The solver returns a shortest path which is then used by the downstream neural
model for e.g., deciding the next action, or computing a loss function

8

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Learning to Explain
1. A neural model assigns weights to words in the input

2. Weights are used as parameters of a discrete distributions with a -subset constraint

3. A subset of input words is sampled from this distribution, and used by a
classification model to produce a prediction

k
k

(positive sentiment)

(negative sentiment)

input text Weight assigned

to each token

𝜃 Sample discretely 
exactly k tokens

𝒛~

9

Learning to Explain
1. A neural model assigns weights to words in the input

2. Weights are used as parameters of a discrete distributions with a -subset constraint

3. A subset of input words is sampled from this distribution, and used by a
classification model to produce a prediction

k
k

(positive sentiment)

(negative sentiment)

input text Weight assigned

to each token

𝜃 Sample discretely 
exactly k tokens

𝒛~

10

Learning to Explain
1. A neural model assigns weights to words in the input

2. Weights are used as parameters of a discrete distributions with a -subset constraint

3. A subset of input words is sampled from this distribution, and used by a
classification model to produce a prediction

k
k

(positive sentiment)

(negative sentiment)

input text Weight assigned

to each token

𝜃 Sample discretely 
exactly k tokens

𝒛~

11

Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

12

Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

13

Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

14

Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

15

Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

16

Input weights

E.g., shortest path

E.g., the set of
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Edge weights

Shortest path

Set of all paths

Linear cost function

θ ↦ solve(θ) such that solve(θ) = arg min
z∈𝒞

c(θ, z)

with c(θ, z) = θ⊤z

Examples of combinatorial solvers:

• Top- functions
• Shortest path algorithms
• Maximum spanning three algorithms
• Scheduling algorithms
• Supply chain optimisation algorithms
• .. and many more

k
Top-1:

↦

Backpropagating through Combinatorial Solvers

17

Binary vector

Black-box

combinatorial

solver

ℒ(ŷ, y) = ℒ(fu(z), y) where
θ = hv(x) ∈ ℝn, z = solve(θ) ∈ {0,1}n

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Input

hv fu

x θ solve(θ) z ŷ

Problem: How do we estimate the gradient of the loss ?∇θℒ(ŷ, y)

Backpropagating through Combinatorial Solvers

18

Binary vector

Black-box

combinatorial

solver

ℒ(ŷ, y) = ℒ(fu(z), y) where
θ = hv(x) ∈ ℝn, z = solve(θ) ∈ {0,1}n

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Input

hv fu

x θ solve(θ) z ŷ

Problem: How do we estimate the gradient of the loss ?∇θℒ(ŷ, y)

Combinatorial Solvers and Exponential Families

19

e.g., top- , shortest path algorithm,
maximum spanning tree algorithm..

k Maximum a Posteriori (MAP)
estimation of wrt. z p(⋅ ; θ)

Space of solutions

Exponential family distribution
parameterised by θ

z ← solve(θ) ≡ z ← arg max
z

p(z; θ)

with p(z; θ) = {exp(⟨z, θ⟩) − Z(θ) if z ∈ 𝒞
0 otherwise

Implicit MLE is based on observing that calling a combinatorial solver on
some input weights to obtain a discrete solution is equivalent to
computing the MAP state of an exponential family distribution :

z ← solve(θ)
θ ∈ ℝn z ∈ {0,1}n

p(z; θ)

Combinatorial Solvers and Exponential Families

20

Implicit MLE is based on observing that calling a combinatorial solver on
some input weights to obtain a discrete solution is equivalent to
computing the MAP state of an exponential family distribution :

z ← solve(θ)
θ ∈ ℝn z ∈ {0,1}n

p(z; θ)

e.g., top- , shortest path algorithm,
maximum spanning tree algorithm..

k Maximum a Posteriori (MAP)
estimation of wrt. z p(⋅ ; θ)

Space of solutions

Exponential family distribution
parameterised by θ

z ← solve(θ) ≡ z ← arg max
z

p(z; θ)

with p(z; θ) = {exp(⟨z, θ⟩) − Z(θ) if z ∈ 𝒞
0 otherwise

Combinatorial Solvers and Exponential Families

21

Implicit MLE is based on observing that calling a combinatorial solver on
some input weights to obtain a discrete solution is equivalent to
computing the MAP state of an exponential family distribution :

z ← solve(θ)
θ ∈ ℝn z ∈ {0,1}n

p(z; θ)

e.g., top- , shortest path algorithm,
maximum spanning tree algorithm..

k Maximum a Posteriori (MAP)
estimation of wrt. z p(⋅ ; θ)

Space of solutions

Exponential family distribution
parameterised by θ

z ← solve(θ) ≡ z ← arg max
z

p(z; θ)

with p(z; θ) = {exp(⟨z, θ⟩) − Z(θ) if z ∈ 𝒞
0 otherwise

Implicit MLE in a nutshell

θ =

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021
22

x θ

z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

θ =

23

x θ

Implicit MLE in a nutshell

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021

Perturb-and-MAP

z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

θ =

24

x θ z ℓ(fu(z), y)
fu

Implicit MLE in a nutshell

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021

Perturb-and-MAP

z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

25

x θ z ℓ(fu(z), y)
fu

Implicit MLE in a nutshell

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021

Construct Target Distribution

q(z; θ′￼) = p(z; θ − λ∇zL(fu(z), y)

Perturb-and-MAP

z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

Construct Target Distribution

q(z; θ′￼) = p(z; θ − λ∇zL(fu(z), y)

Approximate MLE Gradients

∇θ L ≈
1
λ [MAP(θ + ϵ) − MAP(θ′￼+ ϵ)]

26

x θ z ℓ(fu(z), y)
fu

Implicit MLE in a nutshell

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021

Perturb-and-MAP

27

Constructing the Target Distribution

q(z; θ′￼) = p(z; θ − λ∇zL(fu(z), y)
How do we select the perturbation size ?λ

If , the IMLE estimate of is

If , the IMLE estimate of is highly biased

How can we automatically select during training?

λ ≈ 0 ∇θℒ(ŷ, y) 0
λ ≫ 0 ∇θℒ(ŷ, y)

λ

28

Constructing the Target Distribution

q(z; θ′￼) = p(z; θ − λ∇zL(fu(z), y)
How do we select the perturbation size ?λ

If , the IMLE estimate of is

If , the IMLE estimate of is highly biased

How can we automatically select during training?

λ ≈ 0 ∇θℒ(ŷ, y) 0
λ ≫ 0 ∇θℒ(ŷ, y)

λ

Impact of the Perturbation Size λ

29

Impact of the Perturbation Size λ

30

Impact of the Perturbation Size λ

31

Automatically Selecting λ

32

Very simple idea:

• Initialise

• During training, adaptively increase until the gradient

estimates satisfy some desired sparsity criteria

λ ← 0

λ

Automatically Selecting λ

33

Very simple idea:

• Initialise

• During training, adaptively increase until the gradient

estimates satisfy some desired sparsity criteria

λ ← 0

λ

Automatically Selecting λ

34

Very simple idea:

• Initialise

• During training, adaptively change until the gradient

estimates satisfy some desired sparsity criteria

λ ← 0

λ

Relationships with Finite Difference Methods

35

∇θL ≈
1
λ [MAP(θ + ϵ) − MAP(θ − λ∇zL + ϵ)]

Single-sample IMLE gradient estimate:

Can be seen as a forward (one-sided) finite difference approximation
in the form .

We can obtain a better approximation using a centred (two-sided)
difference formula:

f′￼(x) ≈ [f(x + h) − f(x)]/h

∇θL ≈
1
2λ [MAP(θ + λ∇zL + ϵ) − MAP(θ − λ∇zL + ϵ)]

Relationships with Finite Difference Methods

36

∇θL ≈
1
λ [MAP(θ + ϵ) − MAP(θ − λ∇zL + ϵ)]

Single-sample IMLE gradient estimate:

Can be seen as a forward (one-sided) finite difference approximation
in the form .

We can obtain a better approximation using a centred (two-sided)
difference formula:

f′￼(x) ≈ [f(x + h) − f(x)]/h

∇θL ≈
1
2λ [MAP(θ + λ∇zL + ϵ) − MAP(θ − λ∇zL + ϵ)]

Results - Estimator Bias and Variance

37

Results - Manual vs. Automatic Selectionλ

38

Results - Learning to Explain

39

(positive sentiment)

(negative sentiment)

𝒛~

Results - Learning to Explain

40

Learning to Explain - Aroma, K = 10

Te
st

 M
S
E

0
1,5

3
4,5

6

SoftSub STE SST IMLE (Forward) IMLE (Central) AIMLE (Forward) AIMLE (Central)

S
ub

se
t

Pr
ec

is
io

n

0
15
30
45
60

SoftSub STE SST IMLE (Forward) IMLE (Central) AIMLE (Forward) AIMLE (Central)

Results - Discrete Variational Auto-Encoder

41

Results - Neural Relational Inference

Observed dynamics Interaction graph Predicted dynamics

T=10 T=20

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

SST (Hard) -2301.47 ± 85.86 33.75 ± 9.44 60.40 ± 23.23 -3407.89 ± 221.53 57.40 ± 17.87 70.42 ± 8.22
IMLE (Forward) -2289.94 ± 4.31 23.94 ± 0.03 95.75 ± 0.14 -3820.68 ± 25.32 20.28 ± 0.12 20.28 ± 0.12
IMLE (Central) -2341.71 ± 41.68 43.95 ± 7.22 43.95 ± 7.22 -3447.29 ± 550.38 40.25 ± 14.26 40.25 ± 14.26

AIMLE (Forward) -1877.90 ± 277.53 55.23 ± 11.86 55.23 ± 11.86 -1884.83 ± 124.62 40.48 ± 4.25 40.48 ± 4.25
AIMLE (Central) -2018.39 ± 357.16 29.32 ± 6.89 41.83 ± 21.51 -1999.57 ± 856.27 70.89 ± 24.77 83.73 ± 1.31

42

Results - Neural Relational Inference

Observed dynamics Interaction graph Predicted dynamics

T=10 T=20

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

SST (Hard) -2301.47 ± 85.86 33.75 ± 9.44 60.40 ± 23.23 -3407.89 ± 221.53 57.40 ± 17.87 70.42 ± 8.22
IMLE (Forward) -2289.94 ± 4.31 23.94 ± 0.03 95.75 ± 0.14 -3820.68 ± 25.32 20.28 ± 0.12 20.28 ± 0.12
IMLE (Central) -2341.71 ± 41.68 43.95 ± 7.22 43.95 ± 7.22 -3447.29 ± 550.38 40.25 ± 14.26 40.25 ± 14.26

AIMLE (Forward) -1877.90 ± 277.53 55.23 ± 11.86 55.23 ± 11.86 -1884.83 ± 124.62 40.48 ± 4.25 40.48 ± 4.25
AIMLE (Central) -2018.39 ± 357.16 29.32 ± 6.89 41.83 ± 21.51 -1999.57 ± 856.27 70.89 ± 24.77 83.73 ± 1.31

43

Summary

44

Implicit MLE [Niepert et al., NeurIPS 2021] allows you to back-propagate through
arbitrary combinatorial solvers, achieving seamless neuro-symbolic integration

• Highly dependent on the perturbation size hyper-parameter λ

In this work, we propose Adaptive IMLE, a method for adaptively selecting during
training based on analysing the sparsity of the gradient estimates

• Off-the-shelf: just add a decorator to your combinatorial solver to use it as a neural
network layer

• Easy-to-use library available at github.com/EdinburghNLP/torch-adaptive-imle

λ

Summary

45

Implicit MLE [Niepert et al., NeurIPS 2021] allows you to back-propagate through
arbitrary combinatorial solvers, achieving seamless neuro-symbolic integration

• Highly dependent on the perturbation size hyper-parameter λ

In this work, we propose Adaptive IMLE, a method for adaptively selecting during
training based on analysing the sparsity of the gradient estimates

• Off-the-shelf: just add a decorator to your combinatorial solver to use it as a neural
network layer

• Easy-to-use library available at github.com/EdinburghNLP/torch-adaptive-imle

λ

