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Discrete Representations in Deep Neural Models

« Combination of discrete optimisation algorithms (e.g., an ILP solver, Dijkstra’s
shortest path algorithm) and arbitrary neural modules
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« Combination of complex discrete probability distributions (e.g., discrete attention
distributions over the input, graph-structured representations) with arbitrary neural
mOdUIeS — | input layer layer x | | . | output
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1. A neural model assigns weights to cells in a map




Learning to Plan

1. A neural model assigns weights to cells in a map

input layer layer x




Learning to Plan

1. A neural model assigns weights to cells in a map

2. Weights are used as input to a shortest path algorithm




Learning to Plan

1. A neural model assigns weights to cells in a map
2. Weights are used as input to a shortest path algorithm

3. The solver returns a shortest path which is then used by the downstream neural
model for e.g., deciding the next action, or computing a loss function




Learning to Explain

1. A neural model assigns weights to words in the input

in the aroma , coffee and chocolate
that is quite pronounced . in the taste ,
coffee , dry chocolate and a hit of
hoppy bitterness . a small bite and
medium bodied mouthfeel , with a dry
roasty coffee in the aftertaste . a nice
coffee and chocolate taste , nice hop
presence , really freakin good .
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1. A neural model assigns weights to words in the input

Learning to Explain

2. Weights are used as parameters of a discrete distributions with a k-subset constraint
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Learning to Explain

1. A neural model assigns weights to words in the input

2. Weights are used as parameters of a discrete distributions with a k-subset constraint

3. A subset of k input words is sampled from this distribution, and used by a
classification model to produce a prediction

in the aroma , coffee and chocolate
that is quite pronounced . in the taste ,
coffee , dry chocolate and a hit of
hoppy bitterness . a small bite and
medium bodied mouthfeel , with a dry
roasty coffee in the aftertaste . a nice
coffee and chocolate taste , nice hop
presence , really freakin good .

input text

input layer

layer x

, coffee and chocolate
quite . In the taste ,
coffee , chocolate hit
hoppy bitterness . a small bite and
medium bodied mouthfeel , with a dry

roasty coffee in the aftertaste . a nice
coffee and chocolate taste , nice hop
really good .

Weight 6 assighed
to each token

chocolate
coffee
chocolate

output

(positive sentiment)

—~ e ‘ True
z bitterness
bodied
roasty False  (negative sentiment)

nice
chocolate
good

Sample discretely
exactly k tokens
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Combinatorial Solvers

We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:
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E.g., shortest path

0 — solve(9)

Input weights
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Combinatorial Solvers

We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

E.g., shortest path

0 — solve(9) such that solve(f) = arg max score(d, z)
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Combinatorial Solvers

We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

E.g., shortest path

0 — solve(9) such that solve(f) = arg max score(d, z)
EE
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Combinatorial Solvers

We consider the problem of back-propagating through a combinatorial solver, i.e., a
(black-box) component that solves the following problem:

Examples of combinatorial solvers:

. Top-k functions
- Shortest path algorithms

» Maximum spanning three algorithms
 Scheduling algorithms

 Supply chain optimisation algorithms
* .. and many more




Backpropagating through Combinatorial Solvers

Black box ZL{,y) = L(f(z),y) where

combinatorial ; )
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Backpropagating through Combinatorial Solvers

Black box ZL{,y) = L(f(z),y) where

combinatorial ; )
m solver M 0=h,(x)eR", z=solve@) e {0,1}
X
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|

DO |soveo bz [l Y
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Problem: How do we estimate the gradient of the loss V,Z(y,y)?
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Combinatorial Solvers and Exponential Families

Implicit MLE is based on observing that calling a combinatorial solver Zz < solve(f) on

some input weights ¢ € R” to obtain a discrete solution z € {0,1}" is equivalent to
computing the MAP state of an exponential family distribution p(z; 0):

e.g., top-k, shortest path algorithm,
maximum spanning tree algorithm..

z — solve(d)
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Implicit MLE is based on observing that calling a combinatorial solver Zz < solve(f) on

some input weights ¢ € R” to obtain a discrete solution z € {0,1}" is equivalent to
computing the MAP state of an exponential family distribution p(z; 0):
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Maximum a Posteriori (MAP)

estimation of z wrt. p( - ; 0)

Z < arg max p(z; 0)
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Combinatorial Solvers and Exponential Families

Implicit MLE is based on observing that calling a combinatorial solver Zz < solve(f) on

some input weights ¢ € R” to obtain a discrete solution z € {0,1}" is equivalent to
computing the MAP state of an exponential family distribution p(z; 0):

e.g., top-k, shortest path algorithm,
maximum spanning tree algorithm..

z — solve(d)

Maximum a Posteriori (MAP)
estimation of z wrt. p( - ; 0)

Z «— argmax p(z; 0
& - P(z;0) Space of solutions

with 5(z0) = {exp((z, ) —20)ifze €

0 otherwise
Exponential family distribution
parameterised by 0
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Implicit MLE in a nutshell
R

>0
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Implicit MLE in a nutshell
R a )

Perturb-and-MAP

z = MAP(O + ¢)
»‘9 > e ~ p(€)
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Implicit MLE in a nutshell
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Implicit MLE in a nutshell
R a ) ~

Perturb-and-MAP
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Construct Target Distribution

q(z;0") = p(z;0 — AV, L(},(Z),y)
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Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021




Implicit MLE in a nutshell
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Approximate MLE Gradients

< Construct Target Distribution

1
VoL % - [MAP® +¢) — MAP(®' + ) 4(@:0) = p(z:;0 = 2V, L(f,(@).)
N Y N Y
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Constructing the Target Distribution

Q(Z, H’) — p(Z, H ZL(fu(z),y)



Constructing the Target Distribution

Q(Z, H’) — p(Z, H ZL(fu(z),y)

If A = 0, the IMLE estimate of V,Z(y,y)is 0
If 1 > 0, the IMLE estimate of V,Z(y,y) is highly biased

How can we automatically select A during training? 28



Impact of the Perturbation Size A

Cosine Similarity x Value of A, IMLE vs. STE vs. SFE

Sparsity (%)
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Impact of the Perturbation Size A

Sparsity (%)

Cosine Similarity
o o o o
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Impact of the Perturbation Size A

Cosine Similarity x Value of A, IMLE vs. STE vs. SFE

Sparsity (%)

Cosine Similarity
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Automatically Selecting A

Very simple idea:
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Automatically Selecting A

Very simple idea:

e Initialise 4 « 0
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Automatically Selecting A

Very simple idea:
e Initialise 4 < 0

- During training, adaptively change A until the gradient

estimates satisfy some desired sparsity criteria
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Relationships with Finite Difference Metho

Single-sample IMLE gradient estimate:

1
VoL ~— IMAP© + €) — MAP(0 — AV, L + ¢)|

Can be seen as a forward (one-sided) finite difference approximation

in the form f"(x) &~ |f(x + h) — f(x)| /.
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Relationships with Finite Difference Metho

Single-sample IMLE gradient estimate:

1
VoL ~— IMAP© + €) — MAP(0 — AV, L + ¢)|

Can be seen as a forward (one-sided) finite difference approximation
in the form f"(x) &~ |f(x + h) — f(x)| /.

We can obtain a better approximation using a centred (two-sided)
difference formula:

V,L ~ 2—2 [MAP@ + 2V, L)+ ¢) - MAP(H — AV, L)+ e)]
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Results - Estimator Bias and Varlance

Number of samples x Similarity
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Results
Lo Value of A X Similarity to the true gradient
—

o 0.8 i/ —— IMLE (Forward, S =1000)
© | IMLE (Central, S = 1000)
€ 067 — AIMLE (Forward, S =1000)
© 041 — AIMLE (Central $=1000) ===
= | —— STE (5=1000)
S 024 — SFE (5=1000)

0.0 | |

0 1 2 3

- Manual vs. Automatic A Selection

38



Results - Learning to Explain

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a little lacing.

Smells like Wheat and European hops , a little yeast in there too. There is some fruit in there too, but you have to take a good
whiff to get it. The taste is of wheat, a bit of malt, and alittle fruit flavour in there too. Almost feels like drinking

Champagne , medium mouthful otherwise. Easy to drink, but not something I’d be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

in the aroma , coffee and chocolate input layer  layer x , coffee and chocolate chocolate output

that is quite pronounced . in the taste , quite . in the taste , C_Olf?e it :
N . ) chocolate (positive sentiment)

coffee , dry chocolate and a hit of coffee, chocolate hit hoppy ‘ True

hoppy bitterness . a small bite and hoppy bitterness . a small bite and ~ z bitterness

medium bodied mouthfeel , with a dry medium bodied mouthfeel , with a dry bodied

roasty coffee in the aftertaste . a nice roasty coffee in the aftertaste . a nice il(:z:y Fase  (negative sentiment)

coffee and chocolate taste , nice hop coffee and chocolate taste , nice hop -

presence , really freakin good . really good . good
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Subset

Test MSE

Precision
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45
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Results - Learning to Explain

Learning to Explain - Aroma, K = 10

I . E A

SoftSub STE IMLE (Forward) IMLE (Central)  AIMLE (Forward) AIMLE (Central)

SoftSub STE IMLE (Forward) IMLE (Central) AIMLE (Forward) AIMLE (Central)
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Results - Discrete Variational Auto-Encoder

Test Loss

Test Loss

Epochs X Test Loss, AIMLE vs. IMLE
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- —— AIMLE (Central, SoG, K=10,5=1)
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T T T T

20 40 60 80
Epoch

100

175 1

150 1\

125 A

—— IMLE (Forward, Gumbel, A=10.0,K=1,5=1)
IMLE (Central, Gumbel, A=10.0,K=1,5=1)

—— AIMLE (Forward, Gumbel, K=1,5=1)

—— AIMLE (Central, Gumbel, K=1,5=1)
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Predicted dynamics

Observed dynamics
T=10 T=20
Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.
SST (Hard) -2301.47 £85.86  33.754+9.44 60.40 +23.23 -3407.89 +221.53 57.404+ 17.87 70.42 £ 8.22
IMLE (Forward)  -2289.94 + 4.31 2394 £0.03 95.75+£0.14  -3820.68 £25.32  20.28 £0.12  20.28 £0.12
IMLE (Central) -2341.71 £41.68 4395 +7.22 4395 +7.22 -3447.29 £+ 550.38 40.25 + 14.26 40.25 + 14.26
AIMLE (Forward) -1877.90 +277.53 5523 +£11.86 5523 +11.86 -1884.83 + 124.62 40.48 +4.25  40.48 4+4.25
AIMLE (Central) -2018.39 +357.16 2932 £6.89 41.83 £21.51 -1999.57 +856.27 70.89 +24.77 83.73 + 1.31
43




Summary

Implicit MLE [Niepert et al., NeurlPS 2021] allows you to back-propagate through
arbitrary combinatorial solvers, achieving seamless neuro-symbolic integration

» Highly dependent on the perturbation size hyper-parameter A
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Summary

Implicit MLE [Niepert et al., NeurlPS 2021] allows you to back-propagate through
arbitrary combinatorial solvers, achieving seamless neuro-symbolic integration

» Highly dependent on the perturbation size hyper-parameter A

In this work, we propose Adaptive IMLE, a method for adaptively selecting A during
training based on analysing the sparsity of the gradient estimates

« Off-the-shelf: just add a decorator to your combinatorial solver to use it as a neural
network layer

« Easy-to-use library available at github.com/EdinburghNLP/torch-adaptive-imle
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