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• Combination of discrete optimisation algorithms (e.g., an ILP solver, Dijkstra’s 
shortest path algorithm) and arbitrary neural modules 

• Combination of complex discrete probability distributions (e.g., discrete attention 
distributions over the input, graph-structured representations) with arbitrary neural 
modules

Discrete Representations in Deep Neural Models
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Discrete Representations in Deep Neural Models



Learning to Plan
1. A neural model assigns weights to cells in a map 

2. Weights are used as input to a shortest path algorithm 

3. The solver returns a shortest path which is then used by the downstream neural 
model for e.g., deciding the next action, or computing a loss function
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Learning to Explain
1. A neural model assigns weights to words in the input 

2. Weights are used as parameters of a discrete distributions with a -subset constraint 

3. A subset of  input words is sampled from this distribution, and used by a 
classification model to produce a prediction

k
k

(positive sentiment)

(negative sentiment)

input text Weight  assigned  
to each token

𝜃 Sample discretely 
exactly k tokens

𝒛~
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Combinatorial Solvers
We consider the problem of back-propagating through a combinatorial solver, i.e., a 
(black-box) component that solves the following problem:

Input weights

E.g., shortest path

E.g., the set of 
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1
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Input weights

E.g., shortest path

E.g., the set of 
all paths

Linear score function

θ ↦ solve(θ) such that solve(θ) = arg max
z∈𝒞

score(θ, z)

with score(θ, z) = θ⊤z

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Edge weights

Shortest path

Set of all paths

Linear cost function

θ ↦ solve(θ) such that solve(θ) = arg min
z∈𝒞

c(θ, z)

with c(θ, z) = θ⊤z

Examples of combinatorial solvers:

• Top-  functions
• Shortest path algorithms
• Maximum spanning three algorithms
• Scheduling algorithms
• Supply chain optimisation algorithms
• .. and many more

k
Top-1:

↦



Backpropagating through Combinatorial Solvers
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Binary vector

Black-box 
combinatorial 

solver

ℒ(ŷ, y) = ℒ( fu(z), y) where
θ = hv(x) ∈ ℝn, z = solve(θ) ∈ {0,1}n

θ = z =

1 0 … 0
1 0 … 0
⋮ ⋱ ⋮
0 0 … 1

Input

hv fu

x θ solve(θ) z ŷ

Problem: How do we estimate the gradient of the loss ?∇θℒ(ŷ, y)
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Combinatorial Solvers and Exponential Families
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e.g., top- , shortest path algorithm, 
maximum spanning tree algorithm..

k Maximum a Posteriori (MAP) 
estimation of  wrt. z p( ⋅ ; θ)

Space of solutions

Exponential family distribution 
parameterised by θ

z ← solve(θ) ≡ z ← arg max
z

p(z; θ)

with p(z; θ) = {exp(⟨z, θ⟩) − Z(θ) if z ∈ 𝒞
0  otherwise

Implicit MLE is based on observing that calling a combinatorial solver  on 
some input weights  to obtain a discrete solution  is equivalent to 
computing the MAP state of an exponential family distribution :

z ← solve(θ)
θ ∈ ℝn z ∈ {0,1}n

p(z; θ)
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Implicit MLE in a nutshell

θ =

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021
22

x θ



z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

z =
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x θ z ℓ( fu(z), y)
fu
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Implicit MLE in a nutshell

Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions - NeurIPS 2021

Construct Target Distribution 

q(z; θ′ ) = p(z; θ − λ∇zL( fu(z), y)
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z = MAP(θ + ϵ)
ϵ ∼ p(ϵ)

Construct Target Distribution 

q(z; θ′ ) = p(z; θ − λ∇zL( fu(z), y)

Approximate MLE Gradients 

∇θ L ≈
1
λ [MAP(θ + ϵ) − MAP(θ′ + ϵ)]
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Constructing the Target Distribution

q(z; θ′ ) = p(z; θ − λ∇zL( fu(z), y)
How do we select the perturbation size ?λ

If , the IMLE estimate of  is  

If , the IMLE estimate of  is highly biased 

How can we automatically select  during training?

λ ≈ 0 ∇θℒ(ŷ, y) 0
λ ≫ 0 ∇θℒ(ŷ, y)

λ
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λ ≫ 0 ∇θℒ(ŷ, y)
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Impact of the Perturbation Size λ
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Automatically Selecting λ
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Very simple idea: 

• Initialise  

• During training, adaptively increase  until the gradient 

estimates satisfy some desired sparsity criteria

λ ← 0

λ
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Very simple idea: 

• Initialise  

• During training, adaptively change  until the gradient 

estimates satisfy some desired sparsity criteria
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Relationships with Finite Difference Methods
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∇θL ≈
1
λ [MAP(θ + ϵ) − MAP(θ − λ∇zL + ϵ)]

Single-sample IMLE gradient estimate:

Can be seen as a forward (one-sided) finite difference approximation 
in the form .  
We can obtain a better approximation using a centred (two-sided) 
difference formula:

f′ (x) ≈ [f(x + h) − f(x)]/h

∇θL ≈
1
2λ [MAP(θ + λ∇zL + ϵ) − MAP(θ − λ∇zL + ϵ)]
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Results - Estimator Bias and Variance
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Results - Manual vs. Automatic  Selectionλ
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Results - Learning to Explain
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Results - Learning to Explain
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Learning to Explain - Aroma, K = 10
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Results - Discrete Variational Auto-Encoder
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Results - Neural Relational Inference

Observed dynamics Interaction graph Predicted dynamics

T=10 T=20

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

SST (Hard) -2301.47 ± 85.86 33.75 ± 9.44 60.40 ± 23.23 -3407.89 ± 221.53 57.40 ± 17.87 70.42 ± 8.22
IMLE (Forward) -2289.94 ± 4.31 23.94 ± 0.03 95.75 ± 0.14 -3820.68 ± 25.32 20.28 ± 0.12 20.28 ± 0.12
IMLE (Central) -2341.71 ± 41.68 43.95 ± 7.22 43.95 ± 7.22 -3447.29 ± 550.38 40.25 ± 14.26 40.25 ± 14.26

AIMLE (Forward) -1877.90 ± 277.53 55.23 ± 11.86 55.23 ± 11.86 -1884.83 ± 124.62 40.48 ± 4.25 40.48 ± 4.25
AIMLE (Central) -2018.39 ± 357.16 29.32 ± 6.89 41.83 ± 21.51 -1999.57 ± 856.27 70.89 ± 24.77 83.73 ± 1.31
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Summary
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Implicit MLE [Niepert et al., NeurIPS 2021] allows you to back-propagate through 
arbitrary combinatorial solvers, achieving seamless neuro-symbolic integration 

• Highly dependent on the perturbation size hyper-parameter λ

In this work, we propose Adaptive IMLE, a method for adaptively selecting  during 
training based on analysing the sparsity of the gradient estimates 

• Off-the-shelf: just add a decorator to your combinatorial solver to use it as a neural 
network layer 

• Easy-to-use library available at github.com/EdinburghNLP/torch-adaptive-imle

λ
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