Complex Query Answering

Pasquale Minervini p.minervini@ed.ac.uk

Main References

1. Approximate Answering of Graph Queries — <u>https://arxiv.org/</u> abs/2308.06585

- 2. Reasoning Beyond Triples: Recent Advances in Knowledge Graph Embeddings (CIKM 2023 Tutorial) — <u>https://kg-beyond-</u> <u>triple.github.io/</u>
- 3. Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases <u>https://arxiv.org/abs/2303.14617</u>
- 4. Complex Query Answering with Neural Link Predictors <u>https://arxiv.org/abs/2011.03459</u>

Neural Link Predictors

They map entities and relation types to *embedding* vectors.

$$\mathbf{e}_{\text{Apixaban}} \in \mathbb{R}^d \quad \mathbf{r}_{\text{treats}} \in \mathbb{R}^{d'};$$

They train embeddings so that links in the graph will have an higher score than links not in the graph;

We can use these to **answer** *simple* (1-hop) link prediction queries.

Neural Link Predictors

We can answer queries like "what are the drugs that interact with Apixaban?"

?D : interactsWith(Apixaban, D)

These are atomic queries, i.e., queries that do not contain any logical connectives (like AND, OR, NOT).

Complex Queries?

However, what if we want to answer more complex queries? For example:

 $P: interactsWith(Apixaban, D) \land$ action(D, vasodilation)

 $?D: \exists D'. interactsWith(Apixaban, D') \land$ interactsWith(D', D)

Complex Query Answering

Two main approaches:

The Query (Graph) Encoder

Graphs can be seen as a strict generalisation of **images**:

- An image can be seen as a "grid graph",
- Each node corresponds to a pixel, adjacent to its four neighbours.

- Convolutional Neural Networks leverage the **convolutional operator** to extract the spatial regularity in images
- Can we generalise this operator to operate on arbitrary graphs?

(2D) Convolution on Images

 \mathbf{K}

 $\mathbf{I} * \mathbf{K}$

(2D) Convolution on Images

Convolution on Graphs

Convolution on Graphs

The Query (Graph) Encoder

- Graph Encoder models operate on graphs, by applying message passing:
- Learnable parameters include entity and variable node embeddings;
- Messages propagate across the query graph;
- After *k* steps of message passing, map all node representations to a single query embedding.

Training

Answer

ML

ML

Trained on automatically generated complex query-answer pairs:

- Sample sub-graphs
- Replace some entities by variables
- Train the model parameters (entity and relation embeddings, query encoder, etc.) via gradient-based optimisation methods, by maximising the likelihood of the training answers.

Evaluation

Models often evaluated on a set of ~14 query structures.

Given a set of query-answer pairs, evaluate using:

Mean Reciprocal Rank
(MRR)

Hits@k

Neural Query Embedding Methods

Pros

- Each query is embedded in a single vector, and query answering has complexity O(n)
- We can encode arbitrary query types
- Scales well, since only small graphs are encoded each time

• The query encoder is a **black box**

Cons

 Requires training on a potentially very large amount of query-answer pairs

Query Decomposition

Announcing ICLR 2021 Outstanding Paper Awards

ICLR · Follow 2 min read · Mar 31, 2021

- <u>Beyond Fully-Connected Layers with Quaternions: Parameterization of</u> <u>Hypercomplex Multiplications with 1/n Parameters</u> by Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan, Anh Tuan Luu, Siu Hui, and Jie Fu
- <u>Complex Query Answering with Neural Link Predictors</u> by Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez
- <u>EigenGame: PCA as a Nash Equilibrium</u> by Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel

 Train a neural link predictor (e.g., ComplEx)

 $?M: \exists D. \text{ interacts } (M, D) \land$ treats (D, anxiety)

- Train a neural link predictor (e.g., ComplEx)
- Answer complex queries by decomposing them in atomic subqueries, and answering them using the neural link predictor

- Train a neural link predictor (e.g., ComplEx)
- Answer complex queries by decomposing them in atomic subqueries, and answering them using the neural link predictor
- Aggregate the answers to the subqueries

- Train a neural link predictor (e.g., ComplEx)
- Answer complex queries by decomposing them in atomic subqueries, and answering them using the neural link predictor
- Aggregate the answers to the subqueries
- Identify the variable assignments that maximise the score of the query Arakelyan et al. Complex Query Answering with Neural Link Predictors. ICL

Query: Which medications have side-effects when taken with drugs for treating Anxiety?

 $?M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem:*

$$M: \exists D$$
. interacts $(M, D) \land$ treats $(D, anxiety)$

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem:*

 $M: \exists D$. interacts $(M, D) \land$ treats (D, anxiety)

30

Complex Query Decomposition

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem:*

31

Complex Query Decomposition

Proposed solution: train a neural model ϕ for answering atomic (simple) queries (e.g. "which drugs treat Anxiety?"), and cast the query answering task as an *optimisation problem:*

T-Norms and T-Conorms

Minimum (or Gödel) t-norm: $A \land B \mapsto \top_{\min} (a, b) = \min(a, b)$ $A \lor B \mapsto \perp_{\max} (a, b) = \max(a, b)$

Product t-norm: $A \land B \mapsto \top_{\text{product}} (a, b) = ab$ $A \lor B \mapsto \perp_{\text{sum}} (a, b) = a + b - ab$

Complementary t-conorm: $\perp (a, b) = 1 - \top (1 - a, 1 - b)$

Complex Query Answering as Search arg max $M,D\in\mathscr{C}$ $\left[\phi_{\text{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\text{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}}\right)\right]$

Greedy Search

Complex Query Answering as Search arg max $M,D\in\mathscr{C}$ $\left[\phi_{\text{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\text{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}}\right)\right]$

Greedy Search

• Identify the k most likely values for D

Complex Query Answering as Search arg max $M,D\in\mathscr{E}$ $\left[\phi_{\text{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\text{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}}\right)\right]$

Greedy Search

- Identify the k most likely values for D
- For each value of *D*:

Complex Query Answering as Search arg max $M,D\in\mathscr{E}$ $\left[\phi_{\text{interacts}}\left(\mathbf{e}_{M},\mathbf{e}_{D}\right) \top \phi_{\text{treats}}\left(\mathbf{e}_{D},\mathbf{e}_{\text{anxiety}}\right)\right]$

Greedy Search

- Identify the k most likely values for D
- For each value of *D*:
 - Identify the k most likely values for M

Complex Query Answering as Search

$$\arg \max_{\substack{M,D \in \mathscr{C} \\ M,D \in \mathscr{C}}} \left[\phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right) \right]$$

Greedy Search

• Identify the k most likely values for D

- For each value of *D*:
 - Identify the k most likely values for M
- Compute the query score for all (M, D) combinations

Complex Query Answering as Search

$$\arg \max_{\substack{M,D \in \mathscr{C}}} \phi_{\text{interacts}} \left(\mathbf{e}_{M}, \mathbf{e}_{D} \right) \top \phi_{\text{treats}} \left(\mathbf{e}_{D}, \mathbf{e}_{\text{anxiety}} \right)$$

Greedy Search

• Identify the k most likely values for D

- For each value of *D*:
 - Identify the k most likely values for M
- Compute the query score for all (M, D) combinations
- Return the most likely value for (M, D)

Inspecting Generated Answers

"In what genres of movies did Martin Lawrence appear?"

 $?G: \exists M . perform(ML, M) \land genre(M, G)$

Inspecting Generated Answers

"In what conros of movies did Martin	Query: $?G: \exists M. perform(ML, M) \land genre(M, G)$					
"In what genres of movies did Martin Lawrence appear?"	M	G	Rank	Correctness		
Lawience appear?		Drama	1	1		
? $G : \exists M$. perform(ML, M) \land genre(M, G)	Do the Right Thing	Comedy	4	1		
		Crime Fiction	7	1		
	National Security	Action	2	1		
		Thriller	3	1		
	-	Crime Fiction	5	1		
	The Nutty Professor	Comedy	6	1		
		Romantic Com.	8	×		
ML <i>M</i> G	2	Romance Film	9	×		

Complex Queries with Literals

Knowledge graph with literals

$$(TA) \underset{\text{winner}}{\longleftarrow} e_1 - \text{hasAge} \rightarrow (22)$$

Complex query with literals

$$(TA) \leftarrow winner - (E_?) - hasAge \rightarrow (C_?)$$

Demir et al. LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals"

42

Complex Queries with Literals

Method	Average	1p	2 p	3p	2i	3i	ip	pi	2u	up	
MRR											
Query2Box	0.213	0.403	0.198	0.134	0.238	0.332	0.107	0.158	0.195	0.153	
CQD	0.295	0.454	0.275	0.197	0.339	0.457	0.188	0.267	0.261	0.214	
LitCQD (ours)	0.301	0.457	0.285	0.202	0.350	0.466	0.193	0.274	0.266	0.215	

- Training with literals beneficial for queries without them
- Bonus: we can **predict literal values** in complex queries

Demir et al. LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals"